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The diffraction of plane surface waves by a floating semi-infinite elastic plate at oblique incidence in a fluid of finite depth is 
investigated. An exact solution of this problem is constructed by the Wiener-Hopf method. Analytic formulae for the velocity 
potential of the liquid and for the reflection and transmission coefficients are obtained. The behaviour of the plate on the waves, 
namely, the distribution of the displacements and deformations as a function of the dimensionless parameters of the problem, 
such as the angle of incidence and the reduced stiffness and depth, is investigated. @ 2004 Elsevier Ltd. All rights reserved. 

The behaviour of an elastic plate floating on waves has been studied previously as it applies to an ice 
sheet. Recently, interest in this problem was increased in connection with the design of artificial islands, 
floating airports and platforms of different kinds. A number of numerical methods exist for solving such 
problems (see the reviews [1, 2]). However, the applicability of numerical methods in the case of short 
waves is doubtful. Most of these methods require a refinement of the mesh for short waves, which leads 
to high-order matrix equations, and the convergence of the numerical algorithms has not been 
substantiated. The need therefore arises to develop methods which are also applicable for short waves. 
An analytic solution of this problem using the Wiener-Hopf method has been constructed [3-6] for a 
semi-infinite plate. The Wiener-Hopf technique allows of a variety of different approaches to the solution 
of the problem, and each publication uses its own approach. 

A specific feature of the boundary-value problem which arises in hydroelasticity is the high order of 
the derivative in one of the boundary conditions. As a consequence of this, in the Wiener-Hopf method 
the solution depends on two constants, the determination of which in explicit form presents difficulties. 
Thus, in the case of oblique incidence a system of linear algebraic equations was obtained in [3] whose 
coefficients are a series in roots of the dispersion relation (a transcendental equation). The case of a 
stratified fluid was considered in [4] where the conditions at the free edge were not specified, and, without 
any justification, the constants were assumed to be zero. The case of normal incidence of a wave in a 
fluid of infinite depth was consideration [5], but the formulae obtained are so complicated that even 
the authors themselves do not attempt to use them to carry out calculations. 

Numerical calculations using the formulae obtained can only be found in the paper by Balmforth 
and Craster [6] and only for the reflection and transmission coefficients. In that paper the elastic plate 
is described by the Timoshenko-Mindlin equation. The solution depends on two constants, but in 
addition to those two additional constants are introduced, and a system of four equations is obtained 
for them. Obviously the dimensionless variables were a poor choice, and as a result, the small term in 
the equation becomes equal to unity. A simple approximate formula for the reflection coefficient is 
derived, which is obtained on the assumption that both constants equal zero. The values of the reflection 
coefficient obtained using that formula are in good agreement with the corresponding values found 
taking into account the non-zero constants. 

Another approach was proposed in [7, 8]. It has been shown that, in the case of normal incidence, 
if the small term is neglected, the system can be inverted, even without calculating its coefficients, and 
the approximate formula obtained in [6] is in fact an exact solution of the problem. Below we describe 
an approach that enables the constants to be determined and enables an exact solution to be obtained 
for the case of the oblique incidence of a wave on a semi-infinite plate floating on the surface of a fluid 
of finite depth. 
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1. F O R M U L A T I O N  OF THE P R O B L E M  

The surface of an ideal incompressible fluid of finite depth H0 is partially covered by a thin elastic semi- 
infinite plate. A plane wave of small amplitude is incident at an angle 0 to the plane, where the wavelength 
is considerably greater than the thickness of the plate. We introduce a Cartesian system of coordinates 
(x, y, z) with the centre O on the edge of the plate, O x  axis directed perpendicular to the edge, Oy axis 
directed along the edge, and O z  axis directed vertically upwards. We shall neglect the settling of the 
plate into the fluid, and the boundary conditions will be referred to the undisturbed fluid surface. The 
problem is solved in the linear formulation. 

The velocity potential of the liquid (p satisfies Laplace's equation 

Aq} = 0 (1.1) 

The boundary conditions can be written in the form 

ago _ 3qo _ 3n (1.2) 
z = - H ° : ~ z z  - 0; z = 0 : ~ z z  - a t  

z = 0 : O a ~ q + p o  h = p ( x > 0 ) } p = - p  +grl , -37 +gTl=0 (x<0)  (1.3) 

Here I1 is the vertical displacement of the upper surface of the fluid (the plate), g is the acceleration 
due to gravity, D is the cylindrical stiffness of the plate, h is its thickness, P and 130 are the densities of 
the fluid and the plate and t is the time. The subsdript h on the Laplace operator means that this operator 
is taken with respect to horizontal variables only. On the edge of the plate the moment and the inter- 
secting force must vanish 

9 a Ia21"l 9 1  Z = 0, X = 0 : a2"q+-- V = + (2--V) = 0 
ax  2 

(1.4) 

where v is Poisson's ratio. 
The dependence of all the required functions on time and on the y coordinate is periodic and is 

expressed by the factor, e i(ky - o~t) where k is the wave number with respect to the y coordinate of the 
incident wave, and m is the frequency. We will introduce the dimensionless variables 

cO, = q0 x' x y, Y z' z t' = cot, H H° k' 
a4Fg-I ' = 7 '  = 7 '  = -l' = ---~, = k l  

where A is the amplitude of the incident wave and 1 = g / m  2 is a characteristic length. Henceforth we 
shall omit the primes. 

In terms of the dimensionless variables we represent the potential q0 in the form 

ip = Oe i(ky-t), 0 = ~ 0 + 0 1 ,  % = e i V x c h ( g ( z + H ) ) "  ch(gH) ' "/ = gcos0, k = gsin0 

where 00 is the potential of the incident wave, 01 is the diffracted potential, y and k are the wave-numbers 
of the incident wave corresponding to the x andy coordinates, and ~t is found from the dispersion relation 
for waves on the surface of a fluid of depth. H ,  namely, g th (gH) - 1 = 0. 

Then from problem (1.1)-(1.4) one can obtain the boundary-value problem for 0] 

a201 2 
~_.~ I k201 O,-H<7.<O (1.5) 

ax  2 O z -  

z = - H :  ~ = 0 (1.6) 

z = 0:--~-Z-01 = 0 (x<0) ,  ~ - k  2 + 1 - 8  -01 = B e i T X ( x > O )  (1.7) 
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. a 2 ] a ,  
o~ l a 2"]Oqb a V a2 + ( 2 - V ) ~ y 2 J ~ z  z = 0 (1.8) 

pgl4 , ~i = , B = ~ -  [~(]t 2 + k2)  2 

Here  ~3, 8, 0 and H are the dimensionless parameters of the problem. 
In addition, the radiation conditions as Ix l ~ ~ and the conditions of the regularity near the front 

edge (local boundedness of the energy) must be satisfied. In view of the assumptions made, the parameter 
8 ~ 1, and hence in what follows we put 8 = 0; this approximation was also used in a number of other 
papers ([5], etc.). 

2. T H E  D I S P E R S I O N  R E L A T I O N S  

We will consider how the waves propagate in a fluid with a free surface and under the plate. We shall 
seek a solution of Eq. (1.5) of the form 

i l xx  e W(O~,Z); ~ ( a , z ) = c h ( ~ ( z + H ) ) / c h ( ~ - ~ 2 + k 2 H )  (1.9) 

with condition (1.6) and the corresponding condition (1.7) on the upper boundary. 

Surface waves. For surface waves the values of ~z must satisfy the dispersion relation 

g th (gH)  - 1 = 0, P- = ,]-~2 + k 2 

This equation has two real roots -+go and a denumerable set of pure imaginary roots _+gj (j = 1, 2, ...), 
situated symmetrically about real axis. Two real values -+7(7 = "J g2_ k 2) and pure imaginary roots 
• +3.(j = 1, 2, ... ; yj. = q-g~- k 2) correspond to these. 

Flexural-gravitational waves. For waves propagating in the plate (so called flexural-gravitational waves) 
the dispersion relation has the form 

gth(btH) - 1 = 0, /.t = ~/0~ 2 + k 2 

This equation has two real roots -+~.0, a denumerable set of pure imaginary roots ___~.j (j = 1, 2, ...), 
symmetrical about the real axis and, in addition, four complex roots, symmetrical about the real and 
imaginary axes: ~1 is the root located in the first quadrant and )~-2 is the root located in the second 
quadrant. The values _+czj (j = -2, -1, 0, 1, ... ; czj ,]-gj;- k 2) correspond to these roots of the dispersion 
relation. If ~.0 > k, cz0 has a real value, otherwise it is imaginary. 

Real roots of the dispersion relations specify propagating waves, whereas all the remaining roots 
specify edge waves, that decay exponentially far from the edge of the plate. The critical angle of incidence 
corresponds to )~0 = k and is defined by the formula 0. = arcsin ()~0/g0). If the angle of incidence is 
greater than the critical angle in the plate only edge waves exist. 

3. A N A L Y T I C A L  S O L U T I O N  OF T H E  P R O B L E M  

The solution of the problem will be constructed by the Wiener-Hopf  method in the Jones interpretation 
[9]. We introduce into consideration the functions of the complex variable cz 

0 
i ~ x  

= = e ~l(X,z)dx ~+(Ct, Z) Ie (~l(X,z)dx, dP_(~,z) f io~x 
0 - - ~  

~l,(a, z) = q)+(a, z) + cl,_(a, z) 

(3.1) 

The function a~+(cz, z) is defined in the upper half-plane {Imcz > 0}, and ~_((z, z) in the lower half- 
plane {Imcz < 0}. By means of analytic continuation they can be defined in the whole complex plane. 



428 L.A.  Tkacheva 

We will investigate the behaviour of the functions Oe(~,  Z) when x + _~o the diffracted potential is 
a reflected wave of the form Re -/r* and a set of exponentially decaying waves. The least decaying wave 
corresponds to the root 3Ii. Hence the function O(cz, z) is analytic in the half-plane {Imcx < ]71 ] } with 
the exception a pole at cz = 7. Whenx  + ~ ,  the potential q)l corresponds to the sum of waves, namely, 
a transmitted wave with wave number %, a wave with wave-number 7, which compensates %, and a 
set of exponentially decaying modes. Consequently, the function o#+(o~, z) is analytic in the half-plane 
{Imo~ > c} with the exception of poles cz = -o~0 and o~ = -7; the quantity c equals the least imaginary 
part of the wave numbers of decaying modes in the plate. 

The function O(o~, z) is the Fourier transform of the function %(x, z) and satisfies the equation 

~20 (0~ 2 + k2)O = 0 
az 2 

The general solution of this equation with condition (1.6) on the bottom has the form 

O(a, z) = C(oOW(a, z) (3.2) 

The function W(cz, z) is defined by expression (1.9). 
We denote by D_+(a) expressions of the type (3.1), where the function % is replace by the left-hand 

side of the first boundary condition of (1.7), and we denote by F_+(a) similar expressions, in which the 
left-hand side of the second condition of (1.7) is taken as the integrand. We shall regard these integrals 
as the Fourier transforms of generalized functions [10]. For these functions the following relations are 
satisfied 

D+(ot) + D_(o0 = C(a )Kl (a ) ,  F+(~) + F_(o 0 = C(ot)K2(a ) (3.3) 

where Kl(a)  and K2(o0 are the dispersion functions for waves on the free surface and under the plate 
respectively 

KI({Z ) -- ~2+k2th( ~-~+k2H)- l 

K2(~ ) = ( ~ ( a  2 + k2) 2 + 1)JCI 2 + k2th( ~2~2 + k2H) - 1 

From boundary conditions (1.7) we have 

B 
D (o~) = 0, F+(a) - i (ot+y)  

Taking this into account, from relations (3.3) we find 

B 
D+(cQ = C(ct)Kl(ot ), F_(oO i(o~+y) - C(°OK2(°O (3.4) 

From the last two equations we obtain 

D+(a) = K(a)(F_(a) K(~) (3.5) 
i((~ + 7J) '  K2(0t) 

According to the Wiener-Hopf  method, it is necessary to factorize the function K(c,), that is, to 
represent it in the form 

K(~) = K+(~)K(~) (3.6) 

where the functions K_+(a) are regular in the same domains where the functions O+(cz, z) are regular, 
respectively. The function K(o 0 has zeros and poles at the points -+Y and _+%. Therefore, we shall 
consider the domains of analyticity of S+ and S_, where S+ is the half-plane {Imc~ < c} with cuts, 
excluding the points - %  and -% and S_ is the half-plane {Imc~ > -c} with cuts, excluding the points % 
and y. 
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We introduce the function 

g (a )  = 
K(IX)~(02 2 .  2 2 . ,  2 2 .  

-(XO)[(X --O~_l) t~ --0~ 2) 
2 2 

This function has no zeros, is bounded and tends to unity at infinity. We factorize g(c 0 as follows [9]: 

g(a) = g+(oOg_(oO, g_+(cQ = exp + dx (3.7) 

- - ~ T I C  

We define the function K±(a) by the expressions 

(c~ -+ 7)g+(o0 

K+_(a) ,v/~ ({X _____ (XO) (0¢, + a_1 ) ((X + (Z_2) 

Here K+(c 0 = K_(-c 0. 
We now write Eq. (3.5) in the form 

B D+(a) BK (-y)  
K(oOF_(oO i(cz + yj(K_(cz)-  K_(-y)) - K+(a~ + i(cz + Y------S 

On the left-hand side we have a function that is analytic in the domain S_, and on the right-hand side 
we have a function that is analytic in S+. By analytic continuation this function can be defined over the 
whole complex plane, and by Liouville's theorem, this function is a polynomial. The degree of the 
polynomial is determined from the behaviour of the function as ] ~] --> ~ .  

From the condition for the energy to be locally bounded it follows that near the edge of the plate 
the velocities have a singularity of order not higher than O(r-X), where )~ < 1 and r is the distance to 
the edge of the plate. Then as ]c~[ ~ ~ the function F_(a) has an order not higher than O(1 ~1£+3)  
[10], whereas the function D+(~) has an order not higher than o(I The functions K_+(~) are of 
order o(1 1-2) at infinity, since g_+(c 0 + 1 as ~ ~ .  Consequently, the degree of the polynomial 
equals unity. We obtain 

__D+((x) + BK_(-7)__ _ BK-(-Y)(a + boo 
K+(ot) i (a  + Y) t 

where a and b are unknown constants, which are found from conditions (1.8). 
Expressing D+(a)  from the last equation and taking into account Eqs (3.2) and (3.4), we find 

1~1 (X, Z, ) BK-(-Y) i -lax , K+(o0( _ _ ~ )  - e Ur'(a, + bc~ - dcx (3.8) 2xi Z ) K - - - ~ a  o~ 

The contour of integration has to be chosen in such a way that it lies completely at the intersection 
of the domains S+ and S_. One can choose the contour of integration on the real axis, going around 
the points c~0 and y from below and around the points - %  and Y from above. 

When x > 0 we multiply and divide the integrand by K_(c 0 and close the contour of integration in 
the lower half-plane. We obtain poles at the points -y, -a j  (j = -2, -1, ...). We evaluate the integral 
using the theory of residues. We obtain 

2 ,2 2 2 
Oq~ i i%x,,/-~j+k th( , ]o t j+kH, f  . 1 ) 
~z(X, 0) = -BK_(-y)  e - -  . ~ . ,  - -  / o~-v~ .  

j = -2  K - ( - O I ' j ) K 2 ( - O I ' J  ) ~" J "~ - O~j 
(3.9) 

From the dispersion relation under the plate we have 

2 + k t h (4 /~  + k2H) = K 1 ( - a j )  
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Substituting this expression into equality (3.9) and the result obtained into boundary conditions (1.8), 
we arrive at a system of linear second-order algebraic equations for finding the unknown constants a 
and b 

All AI2 a = C1 

A21 A22 b C 2 

where 

All = U 2 - ( I - v ) k 2 U o  , A12 = - U 3 + ( I - v ) k 2 U 1 ,  A21 = U 3 + ( 1 - v ) U  1 

A22 = - U 4 + v k 2 U 2 - ( 1 - v ) k 4 U o ,  C 1 = U2-(1-v)k2(Jo ,  C 2 = ~/3+(1-v)(J1 

Um Z Umj ' (Jm ~ Urn;, 
: : jZ2~ ' -~"~ j Umj : 

j = - 2  

. . m-2[m/2l  
KI((Xj)O~ j 

((X~ + k2) 2 -[ml2]K_(-(xj)K'2(-(Xj) 

([m/2] is the integer part of the quantity m/2). 
We will now calculate Um and Urn. To do this, we replace the sums by integrals using the theory of 

residues, multiply and divide the integrand by K+ (~), and close the contour of integration in the upper 
half-plane. We obtain 

U 4 = 0, U m = Wm( ik  ) + V m ( - i k ) ,  (Jm = V m ( i k )  + V m ( - i k )  

l r -  (+ i  "~ K+(_lk)' +" = _ _ z _ _ , / K ÷  , + .  

V°(+-ik) 4k2[~/ +ik K+(_tk)], Vl(+_ik ) - +_4ik~ 

K+(+_ik) K+(+ik) 
V2(+ik) = +2ik~ '  V3(+ik) -  2~ 

, + 
~,o(+ik ) = 1 IK+(+ik) K+(+ik) K+(_ik)l 

~-~[-~T~_Tt-~ ~+ik(]'+ik) ]'+ik ] 

1 FK+(+-ik) , +. 
V~(+ik) = +4ik~(y+ik)L y + i k  K+(_tk)] 

~,2(_+ik ) = K + ( + i k )  ~,3(+_ik) _ K+(+_ik) 
_+2ik~(y_+ ik )' 2~(y_+ ik ) 

The case of normal incidence of the wave, the values of the constants [7] a = 1/y and b = -1/7 2 are 
obtained. In the general case we represent the desired constants in the form 

], b -  1---!-- 
a - 2 _2 + a l '  2 k 2+bl  y + * c  ] , +  

Solving the system, we obtain 

2( 1 - v)ikA~ 2(1 - v)ikA 2 
a 1 = , bl = (]'2 + k2)A (],2 + k2)A 

. + 2 (1 -v ) i k (2k2Dl - ] ' )  
A 1 = - ( 3 + v ) t k D  2+ 2 y +k  2 

2(1 -v) ik(2] 'D 1 - 1) 
Az = ( 3 + v ) D  2+ 

]'2 + k 2 
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I = (3 + v)(1 - v)[K2+(ik) + K2+(-ik)] + 2(5 + 2v + v 2)  - 4(1 - v ) 2 k 2 D ~  

KZ+(ik) K2+(-ik) K'+(ik) K'+(-ik) 
+ - - 4  D 1 - - D2 - y + i k  - y - i k  ' K+(ik) K+(-ik) 

The last relation follows from relation (3.6) and the fact that K+(-cQ = K_(a). 
Substituting the values of coefficients a and b into expression (3.8) and taking into account relations 

(3.6), we obtain the formula for the potential 

[~(]t 2 + k2)K+(~/) 
Ot(x' z) = 2rci x 

f e iaXud(a ,  K+(a)I-a2+k 2 2(1AV) iks (c{ )]da  
× z)K-;T L.T z a 

c t - i k  2..k, a + ik 2 . 
s ( a )  = (3 + v)- - ;T~X+O ) - (3 + v)V_-2TK+(-,k) + 

(3.1o) 

+ 2(1 - v ) i k . _ .  + k2)Dl - ( y +  a) ]  
y--2 + k--"~ lZ(7°~ 

4. T H E  T R A N S M I S S I O N  AND R E F L E C T I O N  C O E F F I C I E N T S ,  
T H E  E L E V A T I O N  OF T H E  F R E E  B O U N D A R Y ,  AND T H E  D E F L E C T I O N  

AND D E F O R M A T I O N S  OF T H E  PLATE 

We can now obtain the reflected and transmitted waves. When Ix I ~ ~ ,  the potential has the form 

i y x  - i~ l x  ilY, oX 
O(x,O) = e +Re  , x -+-o% ~(x,O) = Te , x ~ , , o  

If the angle of incidence of the wave is greater than the critical angle, the quantity T defines the complex 
amplitude of the least decaying wave. Taking the residue at the point c~ = 7 in expression (3.10), we 
obtain 

R -.= ~(~t2+k2)K2+(~)F~2+k2 2(1 z v)iks(T) ] 
-<Ti  L 

The quantity T is defined by the residue at the point o~ = - %  

~(72+k2)K+(7)I  ~2+k2 2(1 ~V l 
K+---TO~2)K'2(tX0-----~ [_ ~'-" °{o ' - ' ) i k s ( - t x ° )  T 

In the case under consideration the amplitude I R I is the reflection coefficient, in view of the normaliza- 
tion performed. We determine the transmission coefficient by the value of I TI. We will find an expression 
for IK+(7) I. We deform the contour of integration in the formula (3.7) into the real axis. Using Sokhotsky's 
theorem we find 

/2Yly - ao[ K; (~,) 

For the reflection coefficient we obtain 

= 17-{:t0] l 4 ( 1 + ~ 7 S ( y  ) 
fRt B' + % (V 2 
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If the angle of incidence of the wave is less than the critical angle, % is a real quantity and 

IK+(%)I = / (7 + ao)lG(%)l 

~12a0( 7 - Ix0)K'2(R0) 

Then the formula for I TI takes the form 

_2 /"/ .. K' ,(7)[~((X0 + k2)2 + 2 1 ]1  . . . . .  I tTI = / "~° _2(1  -v)ik(Y-aO!s(_oto ) 
Y + a o ~  X'2(~o) (a~ + k2)A / 

In the case when the angle of incidence of the wave is greater than the critical angle, % is a pure 
imaginary quantity and 17- %1 = 17 + %1. We obtain 

, 2 2 
d27~K'l(7) ~o +k  2(1GV " 
I . . . . .  IK2(%)K+(%)I 1 7 - %  a )'kS(-%) 

There is an exact energy relation [6] between the amplitudes IRI and [TI 

2 ( K'2(0~0) "~ [RI2 + ITt Re/  . . . .  1 (4.1) 
I,,K', ("/) [13(o¢~ + k2)  2 + 11 ) 

Calculations show that the expressions obtained for the amplitudes, obey this relation exactly. From 
(4.1) it follows that in the case when the angle of incidence of the wave is greater than the critical angle, 
IRI = 1. 

The vertical displacements of the plate and the free surface are found from the relation ~1 = i¢z(x, 0). 
For the elevation of the free surface we obtain the formula 

k 2 . K  . . ~ eiTjxK+(Tj)r7 2+k2 2(1 ] rL(x) = ieiVX+iRe-iVx+i~3(72+ ) +(7)j=2~ 1 

The first term is the incident wave, the second term is the reflected wave and the remaining terms 
represent edge effects (modes which decay exponentially far from the edge). 

For the deflection of the plate we obtain 

2 2 2 , ~., i%x KI(0~j)+I rO~j+k 
rl+(x) = i[3(7 2+k  )K+(7) ~ e ' . ~ ,  - / . . . .  

1="2 K+((zJ)K2(czJ)~ Y - o~j 
2(1 ~xv)iks(_aj)l 

The nature of the distribution of the deflection amplitude of the plate depends on the angle of 
incidence of the wave on the plate. If the angle of incidence of the wave is less than the critical angle, 
as x ~ ~o the plate displacement is a travelling wave with amplitude 

2 2 
[qt = [TlK0th(GoH), ~'0 = ~ 0  z + k  

If the angle of incidence of the wave is greater than the critical angle, all the roots o~j(j = -2, -1, 
0, ...) have an imaginary part, and the plate displacements decay far from the edge. When the angle 
of incidence is close to the critical value and slightly exceeds it, the quantity % has a pure imaginary 
value, close to zero. Then the decay of the deflection amplitude is very slow. Our calculations have shown 
that the maximum deflection amplitudes are observed at the edge. The effect of the depth of the fluid 
on the amplitude of the plate bending turns out to be weak. 

The strain tensor of the plate in dimensional variables has the form 

e = hA 3x 2 3x3y 
32q 32q 

OxOy Oy 2 
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At every point there is a direction along which maximum deformation is reached. The maximum 
deformation of the plate emax is calculated as the eigenvalue of the matrix of greatest absolute magnitude 
em~.(x) = hAem(x)/212), where em (x) is the dimensionless maximum deformation. For normal incidence 
of the wave the maximum deformation is identical with the normal deformation en = e~ and they both 
vanish at the edge. In the case of oblique incidence the deformations at the edge are non-zero. 

5. N U M E R I C A L  RESULTS 

Numerical calculations for a semi-infinite sheet of ice of thickness h = 1.5 m were carried out for the 
following values of the parameters [6]: Young's modulus E = 6 x 109 Pa, density of ice 922.5 kg/m 3, 
and density of water 1025 kg/m 3. 

In Fig. 1 we compare the relations obtained for the reflection and transmission coefficients as a 
function of the frequency for this plate for an angle of incidence of the wave 0 = n/3 (the solid curves) 
and the corresponding curves obtained in [6], taking into account the parameter 8 (the dot-dash curves). 
The dimensionless depth of the fluid was taken to be equal to 100, whereas in [6] this quantity was 
equal to infinity. A difference in the curves is only detectable near the critical values of the parameters. 
It should be noted that the approach used by Balmforth and Claster leads to a system of four equations, 

which must be satisfied at the points +~/_+@ - k 2. If 8 is small and ~ is large, the system is close to 
degenerate. 

A numerical investigator of the dependence of the reflection and transmission coefficients on the 
dimensionless parameters, namely, the angle of incidence of the wave, the dimensionless stiffness of 
the [3 and the fluid depth H, was carried out. In Fig. 2 we show the reflection and transmission coefficients 
as a function of the parameter [3 for 0 = rd6 and 0 = 1t/3. The solid curves correspond to H = 100 and 
the dashed curves to H = 1. The results for the case of normal incidence were presented before in [7]. 
It follows from the graphs that the effect of the depth is insignificant, whereas the influence of the 
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parameters 13 and 0 is strong. The maximum values of the transmission coefficients are observed at critical 
values of the parameters. 

In Fig. 3 we show that distribution of the amplitude of the deflection of the sheet for various values 
of the parameter ~, for an angle of incidence 0 = re/3 and a dimensionless depth H = 100. The critical 
value of the parameter [3 is equal to -0.56063. The value lg13 = -0.56 is subcritical, and lg13 = -0.57 is 
supercritical. 

The dependence of the amplitude of the elevation of the wave at the edge on the parameter 13 for 
different angles of incidence of the wave is shown in Fig. 4; the solid curves correspond to a depth 
H = 100 and the dashed curves correspond to a depth H = 1. As can be seen from the curves, the effect 
of the depth is significant only at a large and supercritical values of the parameter [3. For oblique incidence 
of the wave the maximum amplitudes of elevation of the wave at the edge occur at the critical value of 
the angle. It follows from the calculations that the amplitude of elevation of the free surface is a maximum 
at the edge. The effect of the depth of the liquid on the elevation of the free surface turned out to be 
stronger than on the displacement of the sheet. 

In Fig. 5(a) we show the dependence of the amplitude of the deflection of the sheet at the edge for 
H = 100 and various values of the angle of incidence of the wave. The critical values of the parameter  

are as follows: 13, = -0.56063 for 0 = rt/3 and 13, = 1.2104 for 0 = 7t/6. For 0 = 0 all values of the 
parameter 13 are subcritical. At the critical value of the angle 0 the amplitude reaches a maximum; this 
maximum can be both local and global. 

The amplitudes of the displacements of the sheet and of the elevation of the free boundary at the 
edge are different. In Fig. 5(b) we show the dependence of the level difference at the edge on the 
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parameter 13 for various angles of incidence of the wave for H = 100. As can be seen from the graph, 
the maximum amplitudes of the level difference are reached for normal incidence of the wave and large 
values of the parameter 13, that is, for short waves. For oblique incidence of the waves and critical values 
of the parameters (corresponding to the critical angle) a sharp increase in the amplitude of the level 
difference is observed. If the thickness of the sheet is greater than the amplitude of the level difference, 
the edge of the sheet will periodically emerge from the water and then flop onto it. In that case it is 
necessary to use another model that takes the impact into account. 

Our calculations show that the deformations of the sheet depend strongly on the parameter 13 and 
the angle of incidence of the wave and depend only slightly on the depth of the fluid. If the angle of 
incidence of the wave is greater than critical angle, far from the edge there are no deformations of the 
sheet, since in this case all modes decay. Hence the largest value of em(X) is reached at the edge. The 
least decaying mode is one corresponding to the root o%. If the angle of incidence of the wave is 
subcritical, the largest values of era(x) can be reached both at the edge and at some distance from it, in 
particular, at infinity. In Fig. 6 we show the distribution of the dimensionless maximum deformations 
era(x) over the sheet for various values of the parameter [3 for an angle of incidence of the wave 
0 = re/3 and H = 100; the values lg~ = --4 and -2 correspond to the subcritical case, the value lg13 = - 
0.56063 is close to the critical case, and lgf3 = 0 corresponds to the supercritical case. 

At small values of the parameter 13 (that is, for very long incident waves) the largest value of em(X) 
is reached at a certain finite distance from the edge (in Fig. 6 this is the curve corresponding to 
[3 = 10-4). As the parameter [3 increases, the largest value of era(x) is reached at infinity (the curve 
corresponding to 13 = 10 -2. When 13 is increased further, the largest value of em(X) is shifted to the leading 
edge (the curve corresponding to lg]3 = -0.56063). At supercritical values of the parameter 13 the function 
em(X) decays exponentially far from the edge (the curves corresponding to 13 = 1). 

If the value of the parameter ~ is fixed, then when the angle of incidence of the wave increases the 
maximum deformations at the edge increase, so long as the angle of incidence of the wave is less than 
the critical value, and decrease if the angle becomes greater than the critical value. 
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